

Migraine vertigo and Meniere's disease: the "overlapping syndrome"

Francesco Dispenza MD PhD

First report on hypothetic association

- coincident migraine associated Meniere's disease (MD): successively or coincidentally
- equivalent migraine associated MD: alternating attacks
- delayed MD: end of headache and start of vertigo spells

Arch Otolaryngol. 1962 Mar;75:220-5.

Migraine and Meniere's disease.

ATKINSON M.

PMID: 13863111 DOI: 10.1001/archotol.1962.00740040228008

Mechanism

Several years ago I pointed out 1 that the same vascular mechanism was operative in the vasoconstrictor group of Ménière cases as had been demonstrated by Wolff and his collaborators 2 in 1940 for migraine, that is to say, a primary vasospasm followed be a secondary vasodilation. Pathogenetically, the 2 conditions would appear to be the same, the only difference being the organ involved. The clinical impact of the vaso-

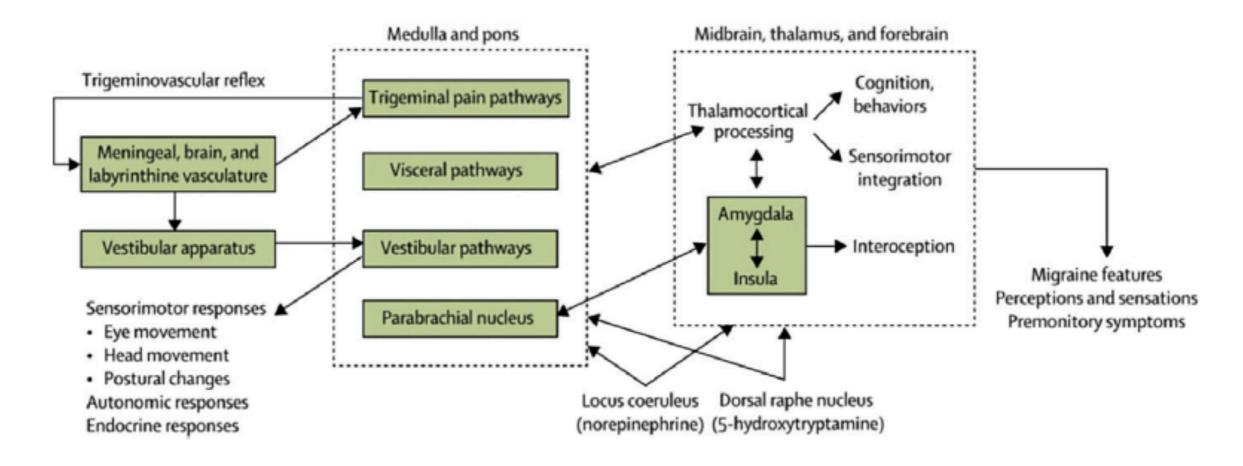
Vestibular Migraine

- VM is a clinical diagnosis
- VM patients have to match all point of clinical features reported

1. Vestibular migraine

- A. At least 5 episodes with vestibular symptoms¹ of moderate or severe intensity², lasting 5 min to 72 hours³
- B. Current or previous history of migraine with or without aura according to the International Classification of Headache Disorders (ICHD)⁴
- C. One or more migraine features with at least 50% of the vestibular episodes⁵:
 - headache with at least two of the following characteristics: one sided location, pulsating quality, moderate or severe pain intensity, aggravation by routine physical activity
 - photophobia and phonophobia⁶,
 - visual aura⁷
- D. Not better accounted for by another vestibular or ICHD diagnosis⁸

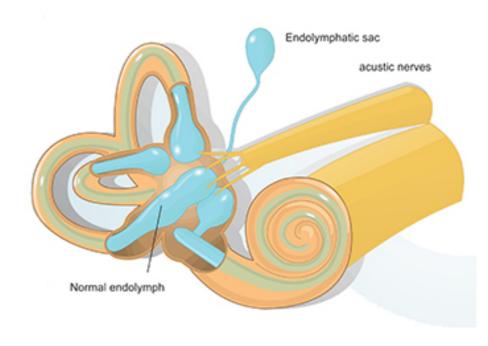
2. Probable vestibular migraine

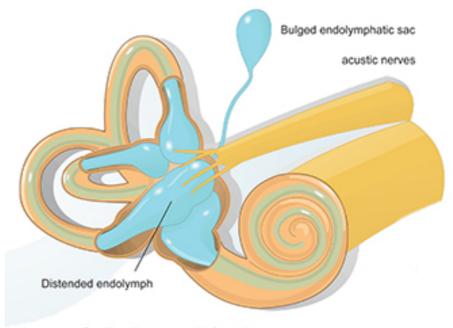

- A. At least 5 episodes with vestibular symptoms¹ of moderate or severe intensity², lasting 5 min to 72 hours³
- B. Only one of the criteria B and C for vestibular migraine is fulfilled (migraine history or migraine features during the episode)
- C. Not better accounted for by another vestibular or ICHD diagnosis⁸

J Vestib Res. 2012;22(4):167-72. doi: 10.3233/VES-2012-0453.

Vestibular Migraine

- prevalence 1%
- male/female ratio 1:5
- first clinical manifestation at 40 years-old (mean age)


cortical spreading depression (CSD)
 with activation of trigeminal afferent
 on inner ear vessels resulting in
 vasodilatation of peripheral
 vestibular system


Meniere's Disease

Normal inner ear

- multifactorial disorder that combines effects of genetics and environmental factors
- accumulation of endolymph in the cochlear duct and vestibular organs
- episodes of spontaneous vertigo usually associated with unilateral fluctuating hearing, fullness and tinnitus
- MD is a clinical diagnosis

Inner ear in Meniere's Disease

Swelling distorts sound information

Meniere's Disease

- vertigo as sensation of selfmotion
- hearing loss of 30 dB HL in two contiguous frequencies below 2 kHz
- fluctuating aural symptoms must be present during vertigo spells with increased intensity in the first year

Journal of Vestibular Research 25 (2015) 1–7 DOI 10.3233/VES-150549

Diagnostic criteria for Menière's disease

Jose A. Lopez-Escamez^{a,k,*}, John Carey^b, Won-Ho Chung^c, Joel A. Goebel^d, Måns Magnusson^e, Marco Mandalà^f, David E. Newman-Toker^g, Michael Strupp^h, Mamoru Suzukiⁱ, Franco Trabalzini^f and Alexandre Bisdorff^j

Definite MD

- Two or more spontaneous episodes of vertigo^(1,2), each lasting 20 minutes to 12 hours⁽³⁾.
- B. Audiometrically documented low- to mediumfrequency sensorineural hearing loss^(4,5) in one ear, defining the affected ear on at least one occasion before, during or after one of the episodes of vertigo^(6,7).
- C. Fluctuating aural symptoms (hearing, tinnitus or fullness) in the affected ear⁽⁸⁾.
- D. Not better accounted for by another vestibular diagnosis⁽⁹⁾.

Probable MD

- A. Two or more episodes of vertigo or dizziness, each lasting 20 minutes to 24 hours.
- B. Fluctuating aural symptoms (hearing, tinnitus or fullness) in the affected ear⁽¹⁾.
- D. Not better accounted for by another vestibular diagnosis⁽²⁾.

Overlap MD with VM

some migraine features are common in patient with MD

A. Radtke, T. Lempert, M.A. Gresty, G.B. Brookes, A.M. Bronstein and H. Neuhauser, Migraine and Menière's disease: Is there a link? Neurology 59 (2002), 1700-1704. Q. Gopen, E. Virre and J. Anderson, Epidemiologic study to explore links between Ménière syndrome and migraine headache, Ear Nose Throat J 88 (2009), 1200-1204.

patients may fit both classifications

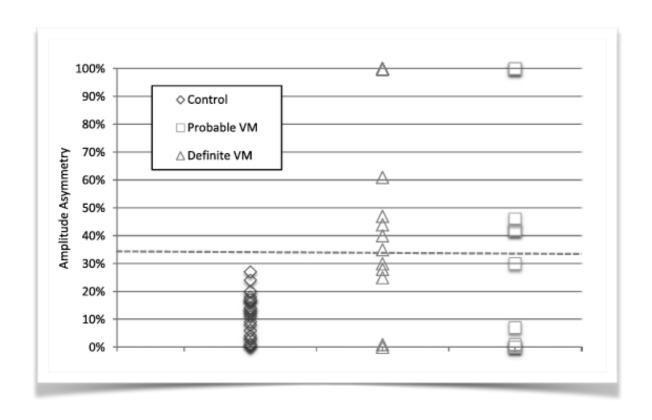
A. Radtke, H. Neuhauser, M. von Brevern, T. Hottenrott and T. Lempert, Vestibular migraine-validity of clinical diagnostic criteria, Cephalalgia 31 (2011), 906–913.

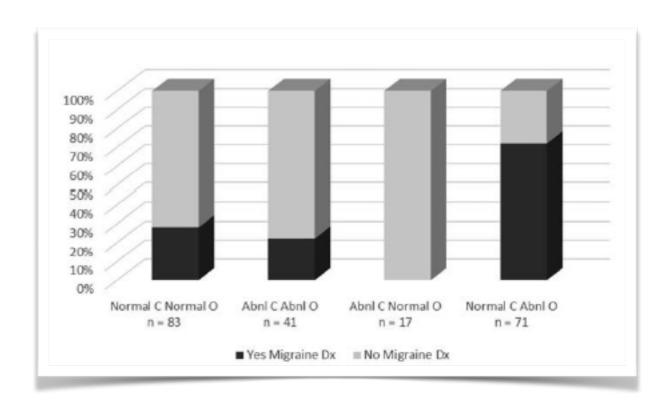
some Authors suggested a common pathophysiology

P. Gates, Hypothesis: Could Menière's disease be a channelopathy? Intern Med J 35 (2005), 488-489. R. Gürkov, C. Kantner, M. Strupp, W. Flatz, E. Krause and B. Ertl-Wagner, Endolymphatic hydrops in patients with vestibular migraine and auditory symptoms, Eur Arch Otorhinolaryngol 271 (2014), 2661-2667.

Symptoms	Relative frequency (%)										
		MD		VM	Probable VM						
	Mostly	Sometimes	Mostly	Sometimes	Mostly	Sometimes					
Nausea	80.7	13.4	76.2	17.9	43.1	43.1					
Tinnitus	68.1	15.1	20.2	26.2	9.2	21.5					
Hearing loss	61.3	16.0	10.7	15.5	9.2	6.2					
Fullness of ear	61.3	19.3	14.3	20.2	7.7	20.0					
Phonophobia	31.1	31.1	60.7	19.1	32.3	29.2					
Photophobia	21.0	20.2	57.1	22.6	26.1	33.9					
Visual aura	0.8	10.1	13.1	19.0	6.2	9.2					
Anxiety	34.4	43.7	50.0	50.0 40.5		35.4					
Vomiting	46.2	37.8	23.8	45.2	7.7	20.0					
Palpitations	3.4	31.1	14.3	35.7	13.9	41.5					
Choking	5.0	6.7	7.1	15.5	7.7	10.8					
Diplopia	0.0	7.6	2.4	9.5	1.5	6.2					
Headache		41.2		95.2		66.1					
Migraine-type headache		8.4		69.1		16.9					
Headache features											
Worse on effort	20.4	40.8	62.5	23.8	27.9	51.2					
Moderate of severe	20.4	40.8	57.5	35.0	18.6	53.5					
Unilateral	10.2	40.8	52.5	27.5	14.0	48.8					
Pulsating quality	18.4	38.8	45.0	35.0	20.9	48.8					

ORIGINAL RESEARCH ARTICLE published: 15 December 2014


Accompanying symptoms overlap during attacks in Menière's disease and vestibular migraine

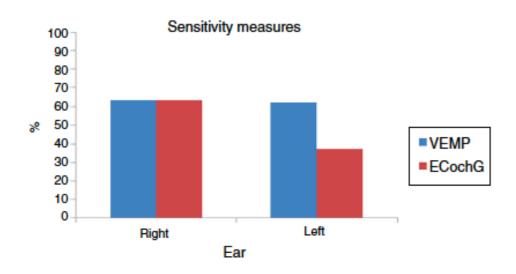

Jose Antonio Lopez-Escamez¹.² *, Julia Dlugaiczyk³, Julien Jacobs⁴, Thomas Lempert⁵, Roberto Teggi⁶, Michael von Brevern⁷ and Alexandre Bisdorff⁸

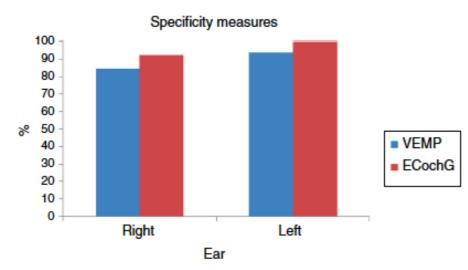
Have we some instrumental tests to segregate the two diseases?

VEMPs in Vestibular Migraine

high rate of oVEMP abnormality

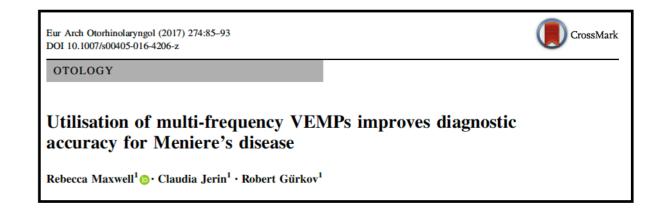
Otology & Neurotology 36:295-302 © 2015, Otology & Neurotology, Inc. Vestibular Evoked Myogenic Potentials in Patients With Vestibular Migraine *Ashley Zaleski, *Jamie Bogle, †Amaal Starling, ‡David A. Zapala, *Laurie Davis, *Matthew Wester, and *Michael Cevette


high rate of oVEMP abnormality

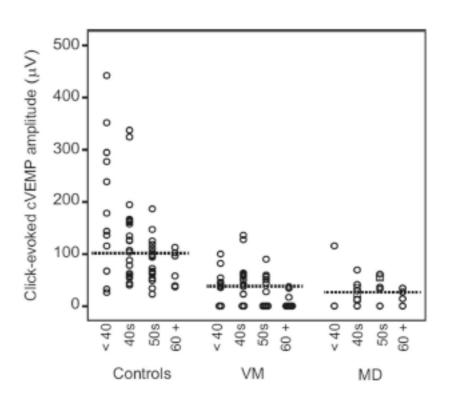

Otology & Neurotology 39:e561–e567 © 2018, Otology & Neurotology, Inc.

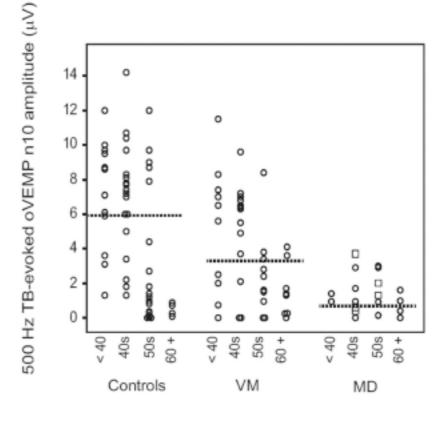
Ocular and Cervical Vestibular Evoked Myogenic Potentials in Patients With Vestibular Migraine

*Kathryn F. Makowiec, †Erin G. Piker, *Gary P. Jacobson, ‡Nabih M. Ramadan, and *Richard A. Roberts


VEMPs in Meniere's Disease

	Meniere's ear $(n = 42)$		Unaffected ear (n = 42)	Control ear $(n = 42)$		
	CVEMP	OVEMP	CVEMP	OVEMP	CVEMP	OVEMP	
500 Hz							
Response prevalence (%)	83.33	90.48	88.10	97.62	95.24	88.10	
Mean amplitude (μV) (±SEM)	55.83 (±10.00)	3.93 (±0.79)	87.41 (±16.09)	7.22	54.53 (±7.33)	3.12 (±0.64)	
				(± 1.45)			
Median amplitude (μV)	29.25	2.5	67.16	3.22	38.53	2.14	
Mean asymmetry ratio (±SEM)	0.21 (±0.08)	$0.25~(\pm 0.06)$			$-0.05 (\pm 0.05)$	0.08 (±0.11)	
1000 Hz							
Response prevalence (%)	85.71	90.48	88.10	95.24	92.86	88.10	
Mean amplitude (μV) (±SEM)	40.18 (±6.15)	3.13 (±0.61)	57.26 (±8.58)	4.81 (±1.13)	37.95 (±5.83)	2.22 (±0.38)	
Median amplitude (μV)	24.69	1.75	39.44	2.42	27.34	1.46	
Mean asymmetry ratio (±SEM)	0.15 (±0.07)	$0.14~(\pm 0.06)$			0.08 (±0.08)	$0.03 (\pm 0.1)$	
500/1000 Hz ratio							
Mean ratio (±SEM)	2.44 (±1.08)	1.36 (±0.12)	2.07 (±0.58)	1.70 (±0.12)	1.75 (±0.23)	1.45 (±0.13)	
Median ratio	1.00	1.19	1.35	1.6	1.42	1.26	


VEMPs in MD and VM


- VM and MD behave similarly on most VEMP tests
- the main finding was a low amplitude compared to healthy subjects
- the Authors hypothesized a link in pathophysiology between the two disease
- no VEMP test can segregate individuals with MD from those with VM

Otolaryngol Head Neck Surg. 2012 May; 146(5): 788-796. doi:10.1177/0194599811434073.

Can Vestibular-Evoked Myogenic Potentials Help Differentiate Ménière Disease from Vestibular Migraine?

M. Geraldine Zuniga, MD^{1,2}, Kristen L. Janky, AuD, PhD¹, Michael C. Schubert, PT, PhD¹ and John P. Carey, MD¹

vHIT in Vestibular Migraine

Table 1

The mean VOR gain for each semicircular canal in the VM group and in normal healthy subject.

	Cases (n = 80)	Control (n=40)	U	P
LL				
Mean \pm SD.	0.84 ± 0.13	0.89 ± 0.15	1278.0	0.072
Median (Min Max.)	0.87 (0.5-1.1)	0.89(0.4-1.3)		
LA				
Mean \pm SD.	1.1 ± 0.3	1.2 ± 0.3	1508.0	0.607
Median (Min. – Max.)	1(0.5-1.8)	1,2(0.8-1.8)		
LP				
Mean \pm SD.	1.2 ± 0.3	1.2 ± 0.3	1526.50	0.680
Median (Min. – Max.)	1.2(0.4-1.8)	1,2(0.8-1.7)		
RL				
Mean \pm SD.	0.9 ± 0.3	1 ± 0.3	1450.50	0.403
Median (Min. – Max.)	0.9(0.4-1.8)	0.9(0.4-1.8)		
RA				
Mean \pm SD.	1.2 ± 0.3	1.3 ± 0.3	1412.0	0.293
Median (Min. – Max.)	1.2(0.3-1.8)	1,2(0.9-1.8)		
RP				
Mean \pm SD.	0.98 ± 0.25	1.10 ± 0.27	978.0 ^a	<0.001 ^a
Median (Min. – Max.)	0.89 (0.8-1.8)	1.03 (0.4-1.8)		

Quantitative data was expressed in mean \pm SD, median (Min. - Max.) and compared using Mann Whitney test.

- VOR gain: ratio between head and eye velocity
- Compensatory movement: covert and overt saccades
- the time required to correct any gaze error to fix a target
- the vestibular-saccades interaction mechanism

	Journal of Otology 13 (2018) 65–67
	Contents lists available at ScienceDirect
	Journal of Otology
PLAGH Chinese PLA General Hospital	journal homepage: www.journals.elsevier.com/journal-of-otology/

Video head impulse test (vHIT) in migraine dizziness

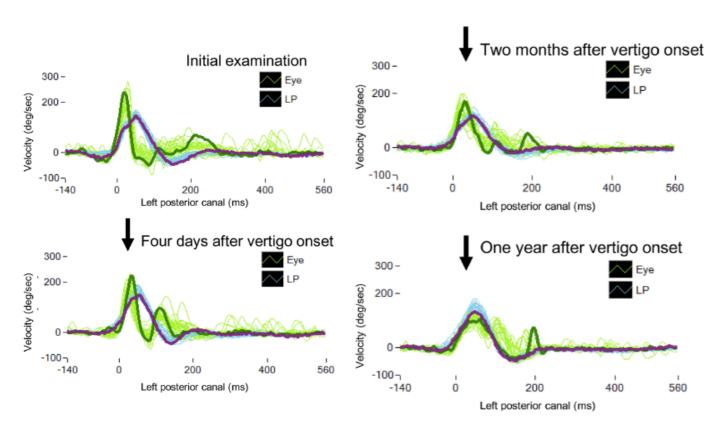
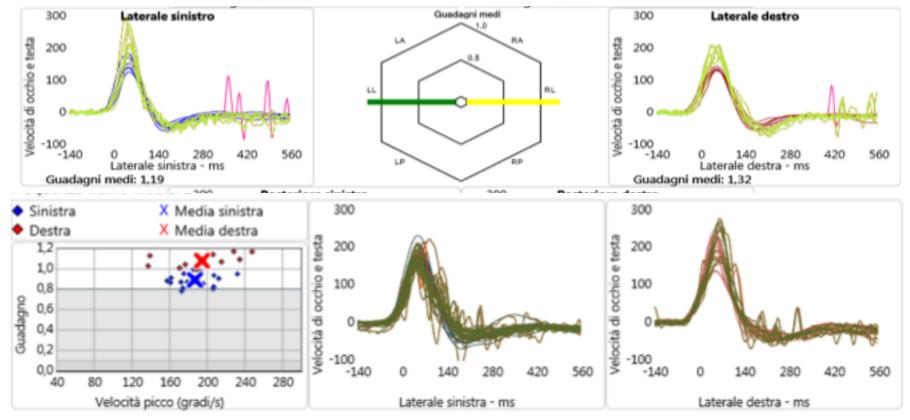
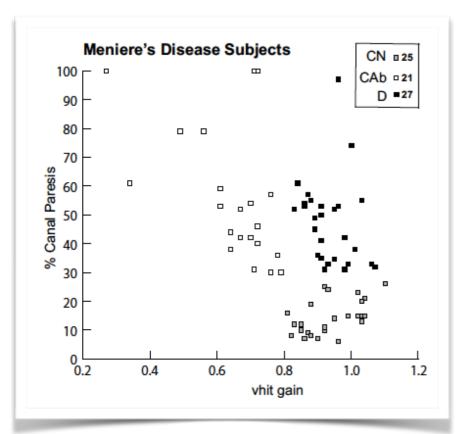

Mayada ElSherif ^{a, *}, Mohamed Ihab Reda ^b, Horeya Saadallah ^c, Mona Mourad ^a

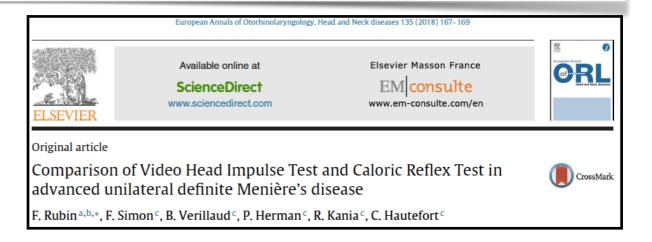
Table 2				
The frequency of saccades	depending on	the VOR gain	in the VM group.	

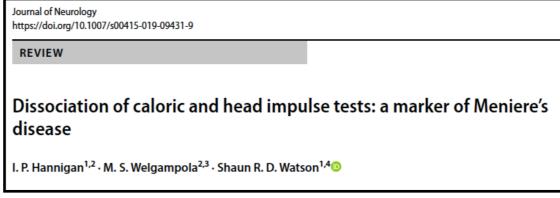
	Frequency	Percent
No saccades	59	73.8
Saccades with normal VOR gain	15	18.8
Saccades with low VOR gain	6	7.5


a Statistically significant at p ≤ 0.05.

vHIT in Vestibular Migraine

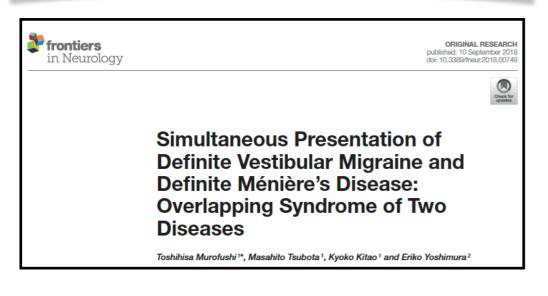

- EAPD: early acceleration and premature deceleration in acute phase
- Overgain

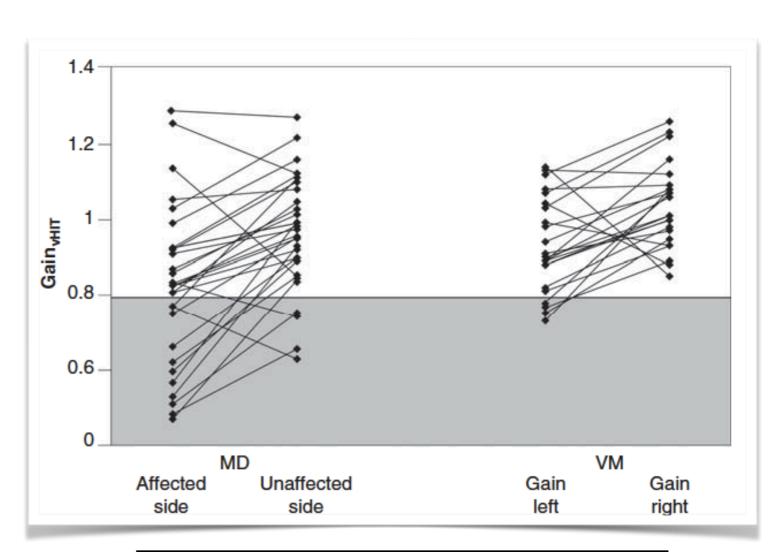


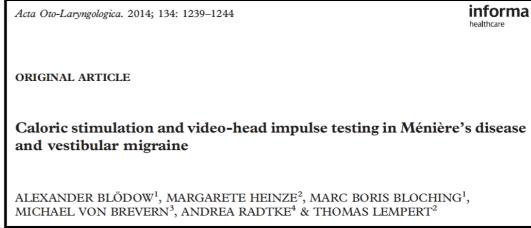

Personal Observation

vHIT in Meniere's Disease

	Definition of MD (AAO-HNS 1995).	Number of patients	Threshold for normal VHIT gain	Percentage normal VHITs	Percentage of VHITs performed during vertigo episode
Park et al. (2005) [9]	Definite	38	0.74	71%	0%
Blodow et al. (2013) [7]	Not specified	22	0.79	45.5%	0%
Mahringer and Rambold (2014) [8]	Not specified	26	0.8	73% (n = 19)	27% (n=7)
Heuberger et al. (2014) [5]	Possible/probable/ definite	35	0.7	100%	0%
McGarvie et al. (2015) [6]	Definite	22	?	100%	0%
Lee et al. (2017) [10]	Definite	14	0.7 for lateral and anterior semicircular canals 0.74 for posterior	71% (10)	100%
Present study	Definite, on 2015 definition	37	0.64 for vertical semicircular canals 0.78 for lateral	100%	8% (n = 3)







vHIT in MD and VM

No.	cVEMP AR	500-1,000 Hz cVEMP slope	vHIT	CP% in caloric test	
1	100%	-100%	LAP WNL	Left 2%	
2	BAR	-100%	L WNL	Left 13%	
3	17.6%	-45.8%	L WNL	X	
4	BAR	NI	X	Right 44%	
5	19.1%	-27.8%	X	Left 5%	
6	100%	-100%	LAP WNL	0%	
7	29.4%	-21.5%	LAP WNL	X	
8	BAR	-100%	LAP WNL	Right 6%	
9	-26.3%	-31.5%	LAP WNL	X	
10	25.3%	-29.20%	LAP WNL	X	

Auditory and Vestibular Symptoms and Chronic Subjective Dizziness in Patients With Ménière's Disease, Vestibular Migraine, and Ménière's Disease With Concomitant Vestibular Migraine

*Brian A. Neff, †Jeffrey P. Staab, ‡Scott D. Eggers, *Matthew L. Carlson, *William R. Schmitt, *Kathryn M. Van Abel, *Douglas K. Worthington, *Charles W. Beatty, *Colin L. Driscoll, and *Neil T. Shepard In this study of consecutive patients evaluated in a tertiary dizziness clinic, 28% of patients diagnosed with MD also had VM and 23% of patients with VM also had MD. An additional 31% of MD patients had migrainous features in their clinical histories, but did not fulfill all diagnostic criteria for VM. An additional 8% of VM patients had hearing loss that required some effort to recognize as inconsistent with MD. How these patients are

TABLE 5. Demographics, audiovestibular symptoms, family history, and self-ratings by diagnostic group

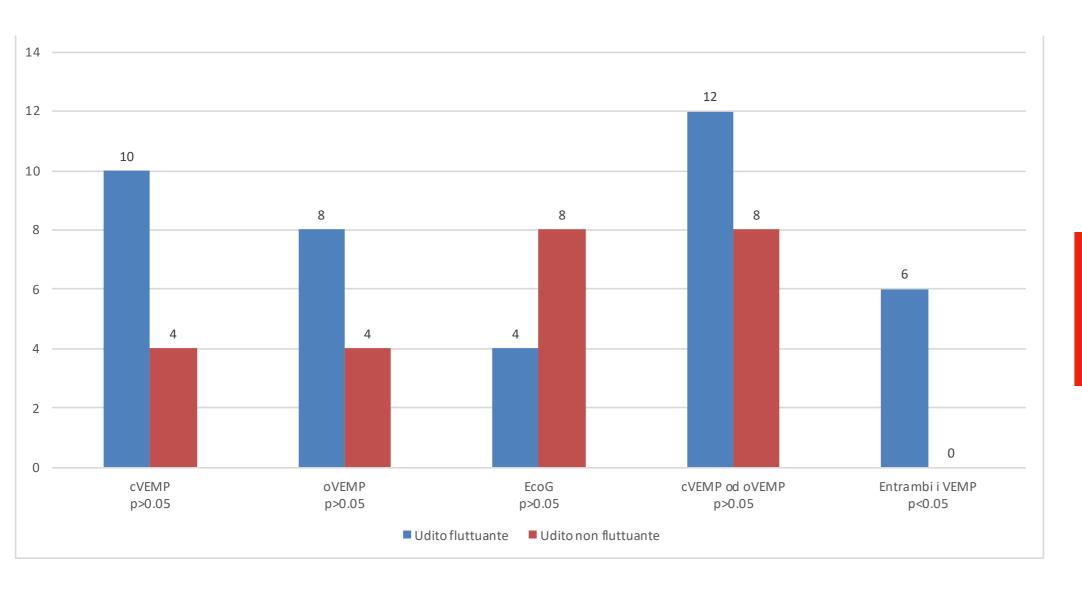
		Disease		p value			Sensit	ivity and spec	ificity	Sensitivity index (d')		
Variable	VM (n = 71)	MDVM (n = 21)	MD (n = 55)	VM versus MD	VM versus MDVM	MDVM versus MD	VM	MDVM	MD	VM	MDVM	MD
Demographic data												
Race (Caucasian)	62 (87%)	19 (90%)	49 (89%)	0.76	0.7	0.9	NA	NA	NA	NA	NA	NA
Sex (female)	59 (83%)	12 (57%)	19 (35%)	<0.0001	0.013	0.07	83%/59%	57%/38%	35%/23%	1.182	-0.129	-1.124
Age onset (yr)	41	42	51	0.0007	0.71	0.07	NA	NA	NA	NA	NA	NA
Illness duration	6 months	1 year	1 year	< 0.0001	0.007	0.338	NA	NA	NA	NA	NA	NA
Vestibular symptoms			-									
Vertigo duration (h)	19 (38%)	14 (70%)	47 (90%)	< 0.0001	0.04	0.09	38%/15%	70%/36%	90%/53%	-1.342	0.166	1.357
Unsteadiness	49 (92%)	16 (100%)	44 (86%)	0.31	0.26	0.11	92%/10%	100%/11%	86%/6%	0.124	1.1	-0.474
Dizziness (nonvertiginous)	38 (78%)	5 (50%)	25 (50%)	0.0044	0.07	1	78%/50%	50%/36%	50%/27%	0.772	-0.358	-0.613
Auditory symptoms	` '											
Fluctuating HL	9 (14%)	13 (62%)	43 (78%)	< 0.0001	< 0.0001	0.14	14%/26%	62%/57%	78%/75%	-1.724	0.482	1.447
Progressive HL	14 (22%)	18 (86%)	51 (93%)	< 0.0001	< 0.0001	0.34	22%/9%	86%/46%	93%/63%	-2.113	0.98	1.808
Tinnitus	37 (55%)	18 (86%)	53 (96%)	< 0.0001	0.014	0.09	55%/7%	86%/26%	96%/38%	-1.35	0.437	1.445
Aural fullness	33 (51%)	14 (67%)	43 (78%)	0.0026	0.227	0.3	51%/25%	67%/37%	78%/45%	-0.649	0.108	0.647
Otalgia	17 (27%)	4 (24%)	9 (17%)	0.09	0.75	0.4	27%/82%	24%/78%	17%/73%	0.303	0.066	-0.341
Hearing loss related to vertigo	8 (44%)	4 (22%)	21 (43%)	0.91	0.16	0.12	44%/63%	22%/55%	43%/67%	0.181	-0.647	0.264
Tinnitus related to vertigo	13 (50%)	7 (39%)	27 (59%)	0.47	0.47	0.15	50%/47%	39%/44%	59%/55%	-0.075	-0.43	0.353
Aural fullness related to vertigo	16 (70%)	7 (50%)	24 (65%)	0.71	0.23	0.33	70%/39%	50%/33%	65%/47%	0.245	-0.44	0.31
Family history												
Family history of vertigo/dizziness	16 (30%)	10 (56%)	7 (17%)	0.16	0.04	0.002	30%/72%	56%/76%	17%/63%	0.058	0.857	-0.622
Family history of hearing loss	11 (25%)	8 (44%)	13 (33%)	0.74	0.19	0.35	25%/64%	44%/73%	33%/69%	-0.316	0.462	0.056
Other		, ,										
Mean DHI score	51	40	41	0.02	0.03	0.76	NA	NA	NA	NA	NA	NA
HADS (abnormal)	32 (48%)	6 (32%)	22 (45%)	0.58	0.11	0.26	48%/59%	32%/53%	45%/56%	0.177	-0.392	0.025
Comorbid CSD	29 (41%)	1 (5%)	2 (4%)	< 0.0001	0.002	0.82	41%/96%	5%/75%	4%/76%	1.52	-0.97	-1.044

Gray shaded boxes mark variables with statistical significance (p < 0.05) in the 3-way multivariate logistical regression analysis; bold p values are significant in bivariate analysis. CSD indicates chronic subjective dizziness; DHI, Dizziness Handicap Index; HADS, Hospital anxiety and depression scale.

TABLE 7. Physical examination and laboratory test results by diagnostic group

		Disease			p value			Sensitivity and specificity			Sensitivity index (d')		
Variable	VM (n = 71)	MDVM (n = 21)	MD (n = 55)	VM versus MD	VM versus MDVM	MDVM versus MD	VM	MDVM	MD	VM	MDVM	MD	
Physical examination													
Headshake nystagmus (abnormal)	9 (15%)	14 (70%)	28 (62%)	< 0.0001	<0.0001	0.55	15%/35%	70%/65%	62%/71%	-1.42	0.91	0.86	
Head thrust (abnormal)	2 (3%)	6 (29%)	16 (37%)	< 0.0001	0.0017	0.3	3%/66%	29%/83%	37%/89%	-1.47	0.40	0.90	
Nystagmus with mastoid vibration (abnormal)	7 (12%)	7 (35%)	25 (60%)	< 0.0001	0.03	0.17	12%/48%	35%/68%	60%/82%	-1.23	0.08	1.17	
Smooth pursuit (abnormal)	5 (8%)	3 (14%)	2 (5%)	0.09	0.43	0.18	8%/92%	14%/93%	5%/90%	0	0.40	-0.36	
Saccades (abnormal)	0 (0%)	1 (5%)	2 (5%)	0.46	0.09	0.98	0%/95%	5%/98%	5%/99%	-0.68	0.41	0.68	
Vestibular testing													
Mean caloric asymmetry (%)	13%	30%	33%	< 0.0001	0.02	0.75	NA	NA	NA	NA	NA	NA	
Caloric asymmetry (abnormal)	12 (17%)	12 (63%)	37 (69%)	< 0.0001	0.0001	0.67	17%/33%	63%/60%	69%/73%	-1.39	0.59	1.11	
Mean directional prep. (%)	13%	21%	19%	0.09	0.11	0.58	NA	NA	NA	NA	NA	NA	
Directional prep. (abnormal)	5 (15%)	6 (46%)	13 (29%)	0.15	0.03	0.24	15%/67%	46%/77%	29%/76%	-0.60	0.64	0.15	
Rotary chair phase (abnormal)	5 (18%)	8 (47%)	34 (68%)	< 0.0001	0.04	0.12	18%/37%	47%/50%	68%/71%	-1.25	-0.08	1.02	
Rotary chair gain (0.01 Hz)	0.36	0.28	0.25	< 0.0001	0.03	0.48	NA	NA	NA	NA	NA	NA	
Rotary chair symmetry (abnormal)	8 (29%)	2 (12%)	18 (35%)	0.02	0.91	0.07	29%/71%	12%/67%	35%/78%	0	-0.74	0.39	
Rotary chair summary (abnormal)	8 (29%)	8 (47%)	41 (82%)	< 0.0001	0.21	0.005	29%/27%	47%/37%	82%/64%	-1.17	-0.41	1.27	
Posturography (SOT composite)	16 (27%)	5 (33%)	21 (42%)	0.1	0.1	0.69	27%/60%	33%/66%	42%/72%	-0.36	-0.03	0.38	
VEMP (abnormal)	9 (16%)	8 (57%)	14 (45%)	0.0068	0.03	0.46	16%/51%	57%/74%	45%/76%	-0.97	0.82	0.58	
Audiometry													
PTA ≥ 25 dB initial	10 (7%)	19 (83%)	50 (83%)	0.0011	0.0001	0.3	7%/17%	83%/69%	83%/82%	-2.43	1.45	1.87	
$PTA \ge 25 \text{ dB worst}$	12 (9%)	24 (100%)	60 (100%)	< 0.0001	< 0.0001	0.79	9%/0%	100%/63%	100%/78%	-3.67	2.66	3.10	
Discrimination ≤85% initial	3 (2%)	14 (61%)	37 (63%)	< 0.0001	0.015	0.21	2%/38%	61%/79%	63%/89%	-2.36	-0.80	1.56	
Discrimination ≤85% worst	3 (2%)	19 (86%)	51 (86%)	< 0.0001	< 0.0001	0.52	2%/14%	86%/72%	86%/86%	-3.13	1.66	2.16	
Change in discrimination (%/month—mean ± standard deviation)	0.02 ± 0.14	-0.48 ± 3.7	0.6 ± 2.0	0.0002	0.31	0.88	NA	NA	NA	NA	NA	NA	
Hearing class (initial class B-D)	6 (5%)	20 (83%)	42 (71%)	< 0.0001	<0.0001	0.57	5%/25%	83%/74%	71%/83%	-2.32	1.60	1.51	
Hearing class (worst class B-D)	8 (6%)	23 (96%)	56 (95%)	< 0.0001	<0.0001	0.52	6%/5%	96%/66%	95%/79%	-3.20	2.16	2.45	
Hearing loss pattern (low tone)	0 (0%)	10 (42%)	24 (40%)	< 0.001	< 0.0001	0.32	0%/60%	42%/82%	40%/71%	-2.84	0.71	0.3	

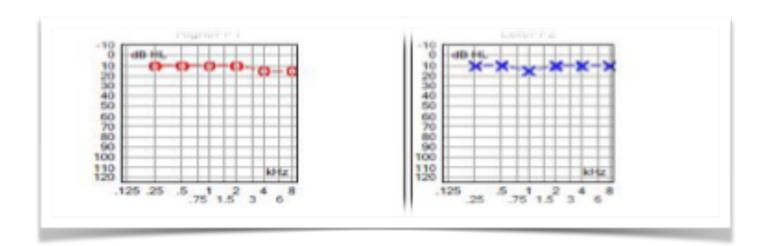
Gray shaded boxes mark variables with statistical significance (p < 0.05) in the 3-way multivariate logistical regression analysis; bold p values are significant in bivariate analysis.

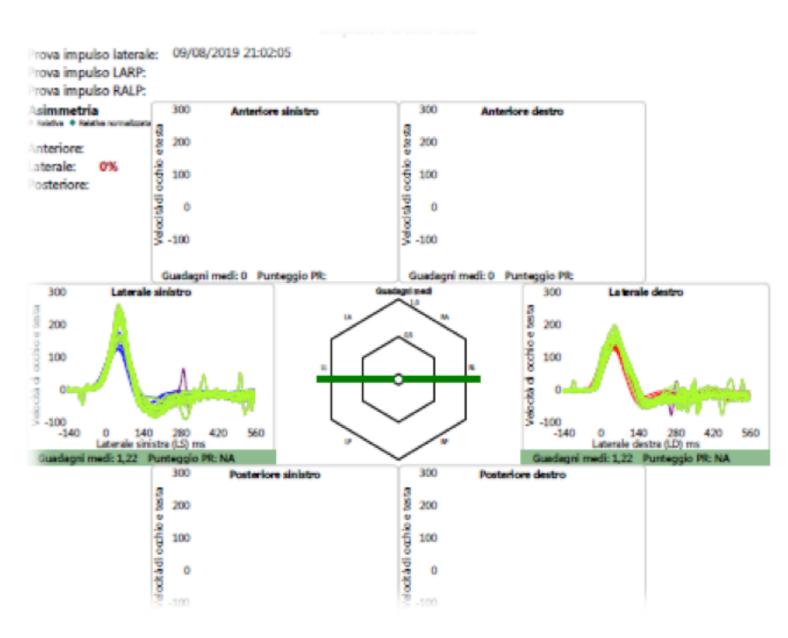

Disc. indicates word discrimination score; NA, not applicable; PTA, pure tone average (500, 1,000, 2,000, and 3,000 Hz); SOT, sensory organization test; VEMP, vestibular evoked myogenic potential.

ing previously reported (2,22). A history of fluctuating hearing loss and progressive hearing loss was reported by 14% and 22% of VM patients, respectively, even though audiograms failed to show hearing loss that met MD criteria. If we consider all patients with VM including those with MDVM, then the rate of subjective fluctuating hearing loss and progressive hearing loss increases to 24% (22/92) and 35% (32/92), respectively.

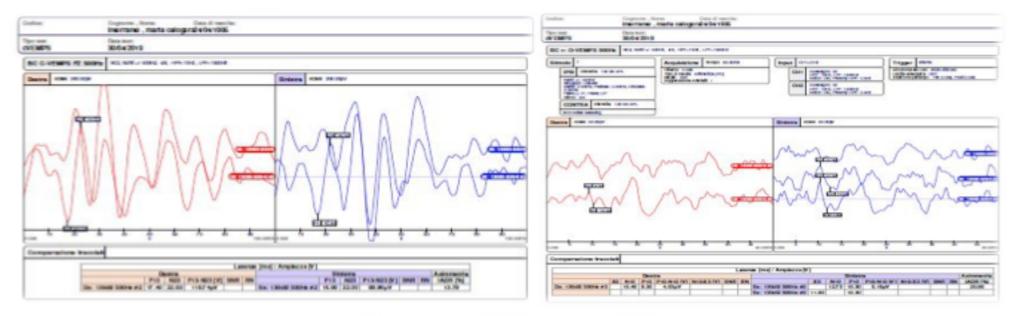
helpful as a distinguishing tool. Perhaps emerging diagnostic modalities such as the ocular VEMP, cervical vestibular evoked myogenic potentials tuning curves, and intratympanic gadolinium enhanced MRI scans will be better for VM, MDVM, and MD categorization. Electrocochleography may be another measure to consider, but its low sensitivity and specificity for MD alone limits its potential (44).

Development of fluctuating hearing loss in Vestibular Migraine patients (2 years of follow-up)


 Asymmetry of both c-VEMPs and o-VEMPs were significantly related to development of fluctuating hearing in VM patients

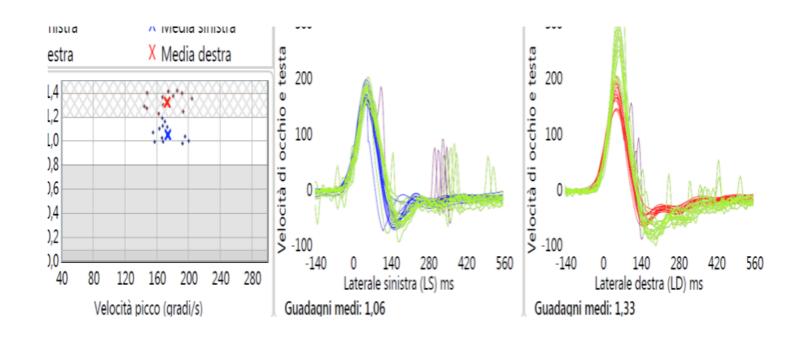


12/30 patients developed SP/AP > 40 at ECochG


Clinical Reports

- female 34 years-old
- history of migraine headache
- dizziness and unsteadiness
- one year later: fullness, tinnitus and persistent dizziness
- any hearing loss or others neurologic symptoms
- Definite Vestibular Migraine

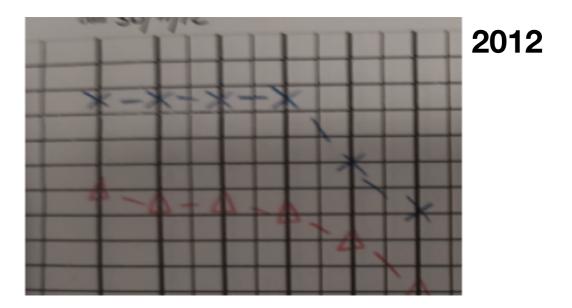
vHIT bilateral overgain with left EA

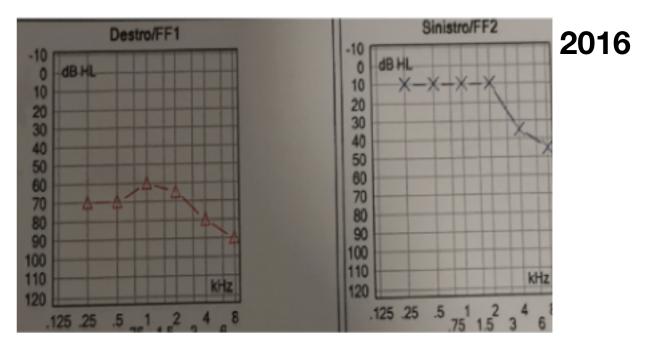

Normal VEMPs without asymmetry

• ECochG: SP/AP ratio 47

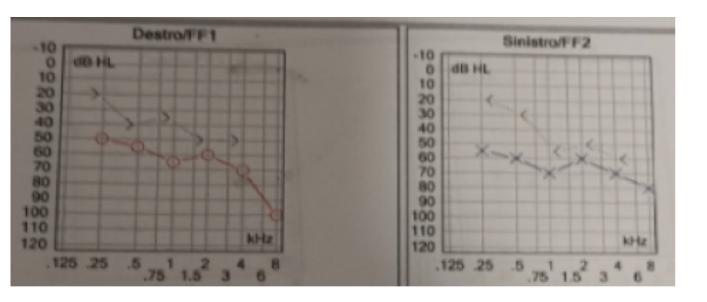
- female 54 years-old
- history of migraine headache with visual aura
- familiar history of migraine (mother)
- dizziness and unsteadiness
- in the last year: vertigo spells (>20 min) with nausea and vomiting

- Normal VEMPs without asymmetry
- Normal pure tone audiometry

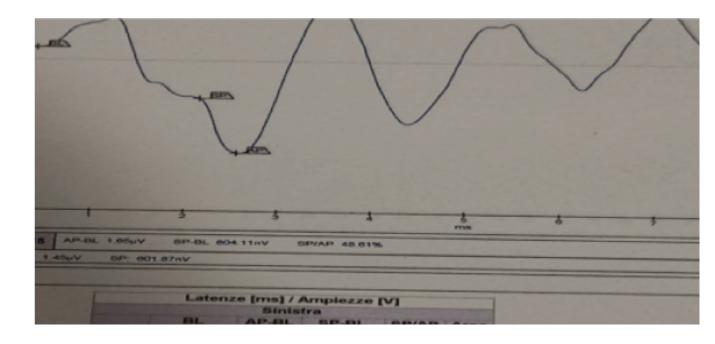

vHIT right overgain with EA



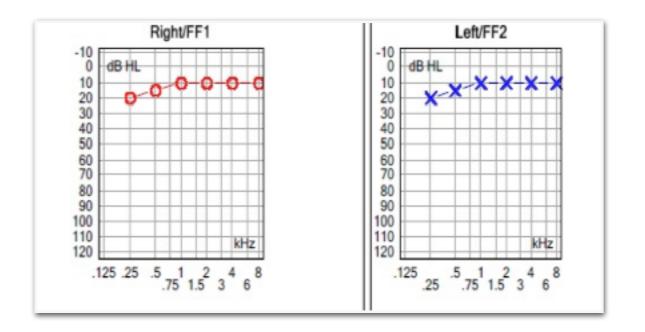
• ECochG: SP/AP ratio 70


- male 44 years-old
- familiar history of migraine (mother)
- Migraine headache since adolescence
- progressive Right hearing loss with intractable vertigo in 2012
- Right Intratympanic
 Gentamicin in 2016 with
 regression of symptoms and
 invariate hearing

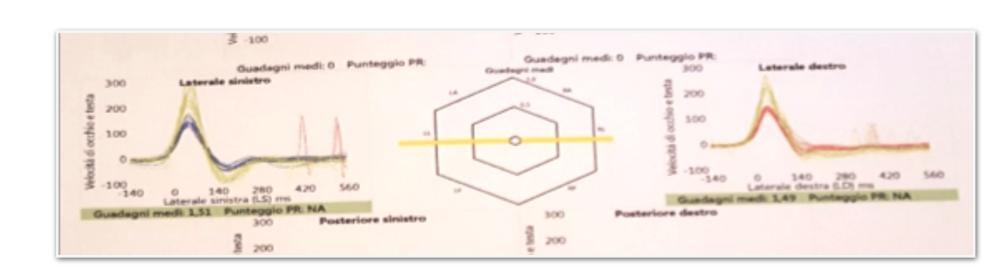
- Normal VEMPs without asymmetry
- Normal vHIT



- progressive Left hearing loss with intractable vertigo in 2017
- Bilateral Meniere's Disease
- Responsive to medical treatment to date

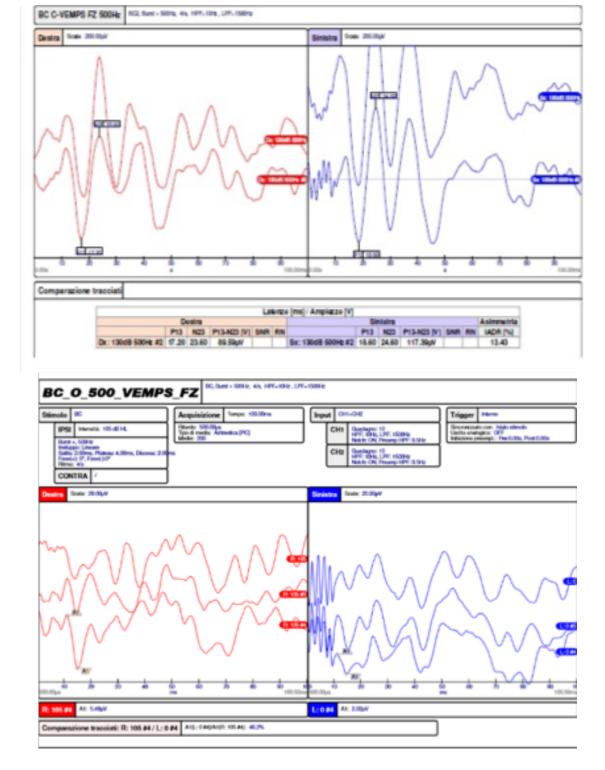


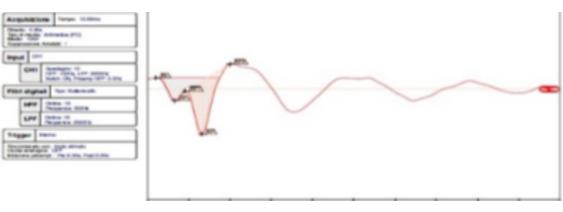
- Normal VEMPs without asymmetry
- Normal vHIT

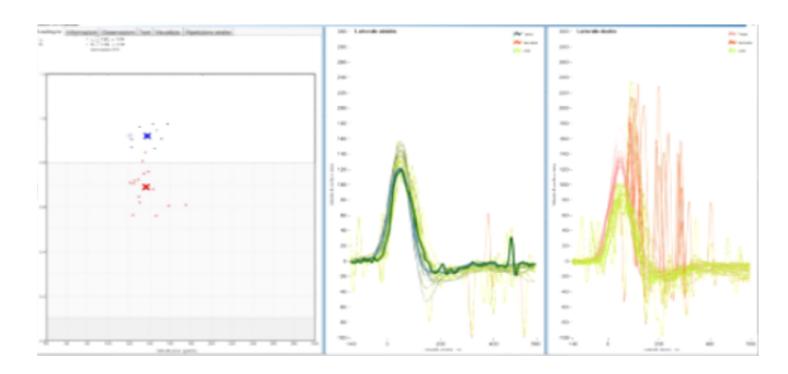


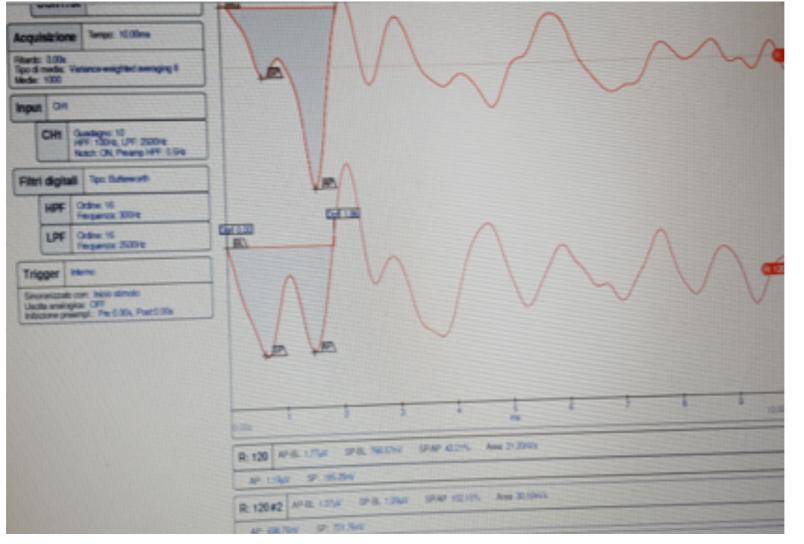
ECochG: SP/AP ratio 55

- female 25 years-old
- familiar history of migraine (mother)
- Migraine headache with visual aura since 2 years
- symptoms worsening during menstrual cycle
- motion sickness
- postural dizziness




- Normal PTA
- vHIT bilateral overgain with right EA


- treatment with diet restriction (histamine) and triptan
- after one year of treatment vertigo spells (>30 minutes) with nausea and vomiting
- right tinnitus and fullness


- Normal c-VEMPs
- Asymmetryc o-VEMPs 47%
- ECochG SP/AP 45

 Sudden access to our clinic in acute phase of vertigo spell

First ECochG

20' later

Conclusions

- An overlap between MD and VM is a clinical entity that may be considered as a separate disease
- MD patients may have migraine symptoms in their history
- VM patients may develop MD in their course of disease
- Efforts must be done to find the pathophysiologic bases of such disease
- A more strictly classification of both diseases should be reduce the numbers of "undefined" diagnosis
- A personalized treatment is desirable in patients with overlapping syndrome

Cathedral of Palermo, Sicily